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Abstract

Human movement and motor behavior science involve various theoretical frameworks and 

methodologies. This study describes the force control of motor phenomenon, processes of linear or 

nonlinear dynamics, and proposes a system approach as an additional potential aspect. Thus far, issues 

regarding these motor control and learning paradigms were critically examined, and their respective 

mechanisms were compared using descriptive analysis. Elaborate simulations based on the transitions and 

development flow of each component at issue contributed to the linear approach, laid concrete emphasis 

on the advantages of the nonlinear approach, and empirically derived the rationale for the indispensable 

application of system dynamics. Sports science can benefit from system dynamics associated with human 

motor behavior, as demonstrated in this study.
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1Introduction

Humans generate, control, and learn motor 

behaviors. During various movements or motor states, 

such processes and principles can be explained from 

three perspectives or based on three different 

approaches: (1) describing mechanisms arising from a 

biological system as having direct linear causal 

relationships (neuroanatomy and robotics), (2) 

explaining the phenomena as nonlinear self-organizing 

structures (Sternad, 2008), and (3) observing 
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quantitative and qualitative states (uncertainty and 

complexity) as processes that inevitably accompany a 

system (Smith & Thelen, 2003). 

The first perspective views our movements as 

essential neural mechanisms, focusing on the role of 

the motor execution system. Multiple motor programs 

are stored in the upper center (i.e., brain), and motor 

control occurs as the nervous system is activated by 

retrieving and adjusting motor programs as needed for 

execution. Considering that control occurs in the lower 

corticospinal tracts in a network of the main or unique 

central nervous system (CNS), such control is 

considered a classic problem in cognitive neuroscience 

(Kandel et al., 2000; Purves et al., 2001). From this 
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perspective, similar to a marionette moving through 

the manipulation of its strings (Rene Descartes, 

1596-1650: Ghost in the machine or Homunculus or 

Tertium quid), our body is interconnected by numerous 

unit elements and moves by direct motor nerve 

commands, signals, or transmissions comprising the 

substrates of the pertinent system (i.e., Turing 

computation or Newtonian mechanics) according to 

kinematic and kinetic principles (Turvey, 1990). A 

framework for this process has become clearly 

formulated through studies describing phenomena as 

the product of linear cause-and-effect interactions that 

are determined based on strict laws. This attempts to 

break down all phenomena into simple components 

that can be modelled using linear equations (Lu et al., 

2019).

The second perspective regards motion control 

because of interactions among three factors: the nervous 

system, body, and environment (Chiel & Beer, 1997). 

This approach is attentive to events in terms of 

co-participants in the relevant context rather than to 

individual interventions based on neural commands or 

actions that trigger motions (Gibson, 1979). Behavior 

is much more interesting than linearity. The notion of 

the linearity (static nature) of mechanical reason has 

been challenged because it does not solve many 

questions about how our movements are highly 

interconnected and nonlinear. According to Bernstein 

(1967), organisms have an excessive number of degrees 

of freedom. Moreover, if we consider that all parts are 

strongly defined by their connections within a certain 

context, a great complexity can be observed (Rosen, 

1991). From a functional perspective, appropriate 

motions are controlled by elements, actors, and the 

surrounding events (Fowler & Turvey, 1978). It has 

been argued that motion is a function rather than a 

mechanism, and movement is not a simple control of 

force but an affordance-based coupling, which is the 

perceived action potential of specific functionally 

enabled elements (Reed, 1985). 

The third perspective involves observing system 

dynamics that integrate various constituents (Abrams & 

Strogatz, 2003). The relationship between the individuals 

or parts refers to how the elements can function together 

to create a structure or adaptation. For example, particles 

that are connected in a process are distributed in space 

and autonomously change over time according to their 

surroundings (Bell, 1964). When certain substances are 

mixed in a certain container (i.e., shallow flat dish), 

spatial-temporal patterns spontaneously emerge 

(Winfree, 1987). This evidence provides images of the 

system dynamics as continua that spontaneously order 

themselves. It emphasizes an understanding of the 

phenomenon of activation and control at the 

interconnected macro-micro level (Haken, 1983). To 

examine the processes rather than the transient states of 

movement or behavior, a more professional in-depth 

understanding of the related mechanisms and algorithms 

has been acquired using essential tools, such as linear 

algebra, agent-based modeling, and scientific 

programming, (Davis & Yen, 2019). This idea was first 

introduced in academia in the mid-20th century as an 

interdisciplinary approach. Further, it has provided 

valuable insight into interlinked phenomena (agent-based 

models and networks) that cannot be solved from a single 

point of view or subject matter (Ashby, 1947; Schöner, 

2002).

This study compares the aforementioned 

perspectives, evolving along different contextual 

directions, to evaluate them empirically through related 

simulations. Accordingly, the concept of a change in 

force control (linear dynamics) has been used to 

demonstrate that causal control alone cannot adequately 

explain various properties of movement. Thus, detailed 

descriptions of the interactional relationships between 

multidimensional forces and (nonlinear) elementary 

coordination dynamics with inherent physical dynamics 

are provided. Furthermore, the necessity of the system 

dynamics approach is highlighted by simulating the 

state and adaptation of these systematically 

interdependent variables of a macro-(environmental) 

and micro (biological) level system. This fresh 
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perspective on refocusing the related model will help 

bridge traditional bias, and will be an inspiration such 

that a dynamic system, which may not always be 

complicated, may gain the ability to distill simple 

principles (Park, 2022a).

Searching for Paradigms

Part 1: Linear Dynamics

Control theories related to computational devices and 

engineering concepts have established the operating 

principles of objects such as robots. They have attained 

a quasi-perfect description and demonstration of their 

mechanical movements (Greene, 1972). However, the 

human body differs considerably from these artifacts. 

Whereas mechanical devices deal with linear 

input-output relationships, interactions between human 

muscles and the CNS are nonlinear (Haken, 1987; 

Kugler & Turvey, 1987). The signal processing used 

to produce a force is subject to an interdependent 

influence of numerous internal and external conditions 

(Newell & Simon, 1976). This limitation in the 

movement of biological systems and the significant 

differences in the flow characteristics are explained by 

the basic concept of force (Kim et al., 1999). To control 

the elementary variables of a structure with an 

incomplete and complex design, the CNS must be 

equipped with a mechanistically strong and elaborately 

designed structure to generate accurate movements and 

predict the results. 

Feedback Loop

Force control for motion is induced by the CNS and 

results in movement through various processes. CNS 

nerves use command signals called control parameters, 

provided solely by the person who performs a motor 

behavior and cannot be changed under the influence of 

external factors or peripheral information. Here, a signal 

provided independently of its result is called a 

feedforward or open-loop control. For instance, when 

a player hits a ball in a ball sport, the brain sends 

commands to the muscles. Further, the movement thus 

generated can be executed regardless of whether the 

player hits the ball or allows a prediction of its result 

before confirmation.

By contrast, a signal transformed by the controller 

depending on the self-generated result is called feedback 

or closed-loop control. An essential element of this type 

of control is the comparator (or reference) (Adams, 

1971), which allows a comparison between the actual 

and desired effects. For example, when cycling, the 

cyclists rely on sensory information to obtain 

information about their speed from the passing wind 

or external moving environments and adjust their 

command signals to decide whether to pedal faster or 

slower or use the brake. This type of control also allows 

the cyclists to maintain their preferred speed. This 

achieves the functional purpose of reducing or 

Figure 1. Representative experimental simulation of the estimated cumulative feedback function. The x-axis denotes the time 

steps, and the y-axis refers to the control function. The set of left plots denotes a uniform distribution with the function (+1) 

and its result. By repeating the same property with the perturb function [(+1)*p(-1)], the construct becomes a delayed and 

non-static result (shown in the plot on the right).
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increasing errors using the ratio of change in an 

environmental variable (Δ/Δy) through a positive or 

negative feedback loop.

A typical function of a negative loop is to reduce 

the initial deviation, whereas that of a positive loop is 

to add a certain proportional number of control 

parameters to the deviation of the environmental 

parameter, which leads to the maintenance of a specific 

value of the output parameter. However, a significant 

delay can occur in unexpected situations. For example, 

in the case of perturbations by an external functional 

signal or feedback loop under a stable state, a complete 

compensation for the external functional perturbation 

needs to be achieved through sufficient error correction 

(Figure 1, left). Furthermore, its failure can cause 

delays, leading to unexpected results (Figure 1, right). 

This response delay is a significant drawback of 

feedback control; it has strong explanatory power for 

a task requiring a long time or high accuracy but weak 

explanatory power for an unexpected intervention or fast 

movement (Schmidt & Lee, 1999). 

In addition, open- and closed-loop control 

mechanisms combine contrasting actional 

characteristics. When applying them to a basketball or 

soccer game, open-loop control allows a player to snatch 

the ball by predicting the next move of the opponent. 

Moreover, closed-loop control executes accurate 

movements based on the present ball movement, relying 

on sensory information. These control patterns are 

attributable to a servomechanism (see Appendix 1’s 

image on the left side for more detail) consisting of 

muscle spindles (alphaMNs) and a γ-system 

(gammaMNs), which is a neurophysiological muscle 

reflex mechanism that produces spontaneous 

movements from a control circuit combining different 

schemas (Matthews, 1972; Merton, 1953). Using an 

open-loop scheme, the controller sends signals set to 

static values to the servo loop (tonic stretch reflex or 

TSR loop), measures the difference between the actual 

and set values (Δ = X1- X2) with the aid of a feedback 

mechanism. Through this process, errors are 

indispensable for the servo function. While an 

experienced servomotor instantly corrects any deviation, 

a novice servomotor frequently lags and makes 

mistakes. This is attributable to the auto-control 

mechanism of the set value within a specified range. 

For example, in an isometric contraction, the muscle 

activity (X) is set to a level enabling continuous 

maintenance by the comparator, causing a spontaneous 

increase (X↑) or decrease (X↓) in activity when the 

difference between the actual and set loads (Δ = X1- 

X2) exceeds a certain level. 

However, muscle activity control in spontaneous 

contractile movements may not be a hierarchical or 

independent activity in which a feedback mechanism 

corrects the deviations in an encoded signal transmitted 

from the center through an open-loop scheme. While 

maintaining the position of the elbow through bicep 

muscle activation to resist an external load, the 

electromyogram signals of the relevant muscle 

disappeared for a certain period when the load was 

abruptly removed (unloading reflex) (Vallbo, 1971). 

However, the muscle resisting a load through a CNS 

command should maintain its activation level according 

to the mechanism based on the above hypothesis. This 

experimental proof, i.e., extensive stretch reflex 

(Matthews, 1972), is a limitation of the force control 

hypothesis (i.e., feedback loop and servo hypothesis) 

in explaining the motor control performed by the human 

body. Thus, it has shifted the attention of researchers 

to a more attractive alternative hypothesis. 

Equilibrium Point 

A gymnast on a high bar can form a suspended and 

swaying motor structure using the elastic forces of the 

muscles interacting with the gravitational force. 

 

  


 





   




 
 (1)

Here,  = mass,  = gravity,  = muscle stiffness, 

 = position of mass defined as  in the  − 

relationship,  = value of the mass () added by the 
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intrinsic properties of the muscle (), and  = length 

of the relaxed muscle. When the body hangs on a high 

bar, the state of the muscles ( ) is formed by the 

equilibrium configuration between the potential 

gravitational energy and the potential elastic energy 

stored in the muscle. This phenomenon (i.e., isometric 

= total potential energies of the system), which involves 

a coupling affecting the muscle length and force until 

reaching the equilibrium point (equilibrium 

configuration), is appropriate for CNS commands 

(elastic potential of the spring), and external loads 

(gravitational potential of the mass) are reached 

(Asatryan & Feldman, 1965; Feldman, 1966; Latash, 

1993) (see Appendix 1’s image on the right side).

As illustrated through a feedback loop, muscle 

reflexes are utilized when muscles are activated to 

characterize the parameters of reflexes that change along 

with the CNS commands. Because this process is 

backed by the unrestricted control capacity of the reflex 

circuit, it can overcome the limitations of the feedback 

loop or servo control hypothesis mentioned above. 

Furthermore, it can be appropriately applied to all reflex 

effects of a spontaneous muscle activation. Moreover, 

the coupling of internal and external factors reflects the 

nonlinear form (invariant characteristic) of the 

equilibrium point hypothesis for muscle control 

mechanisms (Feldman, 1965, 1986; Feldman & Levin, 

1995; Latash, 1993). 

According to a detailed report related to a hypothesis 

quantifying the changing relationships between the 

elementary (force) and performance variables in a 

similar coupling context (Latash, 2000), motor control 

occurs synergistically among various elementary 

variables in achieving a goal.

       (2)

Elementary variables involved in achieving the goal 

of a given movement can be good or bad. In Equation 

(2), to index their relative amounts, VUCM, i.e., the 

variance of the uncontrolled manifold (VUCM), is a 

variance that has no effect on the performance variables 

and corresponds to a coupling between elementary 

variables. In addition, VORT, the variance in the space 

orthogonal to the UCM space (VORT) induces its effect 

on the performance variables for problem posing and 

corresponds to performance errors between elementary 

variables. Moreover, VTOT denotes the total variance 

(VUCM+VORT), and n is the degree of freedom of the 

entire space (n=dfUCM+dfORT). This hypothesis includes 

the possibility that the index reflecting the goal to be 

achieved (ΔV) is determined by VUCM (good variance), 

which does not affect the performance variables (Scholz 

& Schöner, 1999). Therefore, control depends on the 

extent of synergy among the elementary variables to 

achieve the intended motor behavior. 

The above hypothesis, which indexes goal-directed 

synergy considering neurophysiological mechanisms, 

demonstrates that the pattern of force required for 

movement cannot be quantified as a single structural 

output of the CNS. In addition, it suggests that the main 

issue should be expanded from an analysis of only 

elementary units to determine what controls motor 

behavior. This may be understood as suggesting that given 

that the force pattern (control) is combined with other fluid 

variables, the threshold of the invariant characteristics is 

nonlinear (Schöner, 2002). Moreover, there is a functional 

and anatomical collaboration between elementary 

variables, including balanced signal combinations of all 

spinal nerve forms (Turvey & Carello, 1996).

Part 2: Nonlinear Dynamics

Classically, the primary concern in movement and 

motor behavior theories is the concept of force or the 

mechanism of force generation. Force is mainly 

controlled at the level of the higher intelligence (i.e., 

frontal lobe), and the CNS is indispensable in explaining 

the correct judgment and mechanism of a force used. 

However, limitations regarding the explanation of the 

motor execution system are difficult to reveal or 

generalize when applied to various cases, highlighting 

the need for an alternative approach (Greene, 1972). 
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Driven by an inquiry into whether neural mapping 

features remain constant across different situations and 

whether ambiguous neural schemas can be discerned by 

motor execution subsystems, the perspective shifted to 

viewing movement as a nonlinear, self-organizing 

phenomenon (Kugler et al., 1980).

Point Attractor

Research on nonlinear dynamics began in the 1960s 

using nonlinear equations (Haken, 1987). Returning to 

a gymnast swinging on a high bar, suppose the 

gymnast’s body sways significantly once and then less 

the next moment. The primary conditions, such as the 

stiffness of the arm muscles with the gymnasts’ hands 

hanging on the bar (with stiffness ), gymnast’s mass 

(), and friction between the hands and bar (), are 

generally equal. The gymnast’s cyclic sway varies 

depending on the extent to which the gymnast pulls and 

releases their body when hanging on the bar (position 

 , velocity ′ , and acceleration ″). The harder the 

pull is, the longer the oscillation, whereas the weaker 

the pull is, the shorter the oscillation. In both cases, 

the initial pull eventually ceases. Despite the different 

durations and shapes, the phenomenon that applies to 

both cases is a reduction of the energy generated by 

the pull when swaying toward a nonlinear damping of 

the oscillation. In both cases, the initial pull eventually 

ceases. Despite the different durations and shapes, the 

phenomenon that applies to both cases is a reduction 

of the energy generated by the pull when swaying 

toward a nonlinear damping of the oscillation with a 

gradually diminishing amplitude.

  ″ ′  (3)

This system phenomenon of converging to a static 

equilibrium point is termed a “point attractor.” (Kugler 

et al., 1980).

″ ′    (4)

A movement has multiple spatiotemporal paths and 

trajectories, depending on its initial state or disturbance 

(Figure 2). However, the system soon converges to a 

specific preferred state (damping or pumping) according 

to the general tendency to maintain a state with low 

variability and high stability for energy efficiency 

(Saltzman, 1985). This general characteristic is termed 

Figure 3. Experimental representation of synchronous diagrams from two different oscillators (red = oscillator 1, blue = 

oscillator 2): Left = synchronized almost in-phase, with a phase difference; middle = anti-phase condition; right = unmatched 

initial input between objects (a.u. = arbitrary unit). Note that all the structures were created through a circular function to 

clearly show their differences.

Figure 2. Simulation of different attractors. Damped (or 

pumped) decay lines indicate an embedded invariant 

property in the relationship between system attractor and 

damping (or pumping) potential. Dotted line = reference 

point.
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nonlinear attractor dynamics. 

For example, when we lift our fingers or limbs and 

move them in-phase (Figure 3, left) or anti-phase 

(Figure 3, center), we can comfortably maintain the 

phase. If we then move the oscillators (fingers or limbs) 

at a different pace (Figure 3, right, where one limb has 

an oscillation frequency of 1 Hz, and the other has a 

frequency of 0.25 Hz), the phase changes owing to the 

eigenvalue of each oscillator, and this out-of-phase 

mode is less comfortable than the in-phase or anti-phase 

mode. This is due to the increased coordination 

variability, with the energy consumption increasing to 

maintain the eigenvalue of each oscillator. Varying the 

phase coordination requirements signifies that our 

movement system converges to the preferred state, that 

is, in in-phase or anti-phase mode, as in the oscillation 

motion of our example. This is termed a point attractor 

(Pikovsky et al., 2001), which is a purely stable pattern 

that appears during the locomotion of the limbs, head, 

and body.

Elementary Coordination 

This property of invariant dynamics is the limb 

oscillation coordination characteristic of human motor 

behavior and constitutes the basis for explaining the 

regular locomotion of the limbs (Kay et al., 1987). The 

phase of an oscillator can be quantified by adding the 

time-dependent phase angle [ω1(t)] at the point where 

the oscillator motion begins [θ1(0); see Appendix 2 for 

more details of the schematic depiction), where r is a 

constant. When similarly estimating the phase of the 

other oscillator (θ2), [ω2(t) + θ2(0)], the relative phase 

of the limbs is stable when in-phase (θ2 - θ1 ≈ 0) or 

anti-phase (θ2 - θ1 ≈ π).

          (5)

Our limb coordination system prefers in-phase (ϕ  ≈ 0) 

mode (Figure 4, reconfirmed by the Haken-Kelso-Bunz 

(HKB) model) (Haken et al., 1985). Moreover, when the 

energy demand [movement speed = control parameter 

(V)] required for coordination stability, such as an 

increased speed in basic symmetrical motion, increases, 

Participants (N) Joint Trial Task/rest (min) 

8 
Wrist (in-phase) 6 1m / 5m 

Wrist (anti-phase) 6 1m / 5m 

Note. Data collection for the phase test: Group one = 8 participants, 6 trials, at wrist with in-phase (total number of datasets = 

48) and wrist with anti-phase (total number of datasets = 48). Each trial lasted 1 min, with 5-min rest intervals between trials.

Table 1. Data collection for experiment

Figure 4. Schematic of the experimental conditions and results of different phases: Left = general experimental setting with 

apparatus; middle = plot; right = the observed relative phase or phase relation between two oscillators at ϕ≈0 deg (in-phase) 

or ϕ≈ ± 3.14 deg (anti-phase = π). The movement speed denotes the control parameter, and the arrow indicates the 

attractor. In the plot on the right, V is the intrinsic dynamics of the potential function, and the black balls symbolize stable 

states (attractors) and red balls correspond to unstable states (repellers), ϕ2−ϕ1 ≈ 0 denotes a condition of a nearly 

synchronized in-phase, and ϕ2−ϕ1 ≈ π indicates a condition of an anti-phase. 
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the anti-phases of the upper and lower limbs show a 

relatively unstable pattern. This is because the energy 

demand increases up to a certain point where a sudden 

shift to the in-phase mode occurs. By contrast, this 

phase transition, according to the energy demand, does 

not always occur under in-phase mode. There is also 

no phase transition under the same phase because of 

the energy demand (Kelso, 1984).

    cos cos (6)

Here, ϕ is the phase angle of each activated limb 

oscillator, - ϕδω is the difference in the eigenvalue of 

each oscillator, and α and b are the coefficients of the 

two limbs, indicating the coupling strength. Equation 

(6) describes how the relative phase (ϕ), which 

represents the difference in the phase angle between two 

limbs, is determined based on the relative coupling 

strength according to the ratio between the two 

coefficients (α/b) (Kugler & Turvey, 1987). It 

experimentally reflects the nonlinear preferred stability 

that appears in our coordination process, that is, the 

attractor of the potential function (see Appendix 3 for 

more details) (Haken et al., 1985). 

In addition, the symmetry of movements derived 

from the empirically tested nonlinear “point attractor” 

is spatiotemporally broken depending on the structure 

and function of the body (Amazeen et al., 1998). This 

is because routine coordination (e.g., grasping, twisting, 

and manipulating) involves our limbs and occurs in 

various ways due to the voluntary (or imposed 

implementation of) numerous interactions (Collins & 

Stewart, 1993). Therefore, to explain the coordination 

pattern and transition characteristics, we extended the 

basic theoretical model, which can be implemented by 

breaking the symmetry through frequency competition 

(∆ω=ωL-ωR) (Amazeen et al., 1998) in the interlimb 

coordination model (Haken et al., 1985).

It was also implemented without symmetry, breaking 

through the asymmetric coupling of the interlimb 

eigenvalues (=Δω) or coupling intensity (coefficient of 

b/a) by expanding the coordination asymmetry 

(preference (dominant arm), attention, and oscillator 

axis of rotation) (Treffner & Turvey, 1996). For 

instance, based on the interlimb coordination defined 

by Equation (6), condition-dependent differences in the 

coupling intensity of the additional variables under 

examination were quantified through symmetry 

breaking (|c and d|>0, |c and d| ≈ 0) to examine their 

relative differences in phase.

   sin  (7)

    

In the expansion (Equation (7)),  = change in the 

relative phase, Δω= the extent of disequilibrium through 

the eigenvalue of each oscillator, [a cos(φ)+ b cos (2φ)] 

is the extent of equilibrium defined at an oscillation 

value of 0 or π (= inter-oscillator coupling intensity, 

and ρ = Gaussian white noise, i.e., asymmetric coupling 

attractor (= [α sin(ϕ) + 2b sin(2ϕ)]) intentionally added 

to the basic interlimb coordination structure (Amazeen 

et al., 1997; Park et al., 2001). Such applications have 

enabled us to examine from various angles how essential 

coordination dynamics are microscopically manifested 

through asymmetric potentials (see Appendix 4 for more 

details) (Park, 2020). We can recognize the dynamic 

structure of a neurological or behavioral variable as a 

representative state, as expressed by the mean [ϕave- ϕ0

(rad)] and standard deviation [SDϕ(rad)] of the relative 

phase and the coefficient of variation (CV) 

[SDϕ(rad)/ϕave-ϕ0(rad)].

However, this approach cannot elucidate whether the 

outputs of a movement or motor behavior of individual 

elements continuously change within a time series, not 

to mention the situation itself (Horn & Newton, 2019). 

This has contributed significantly to our understanding 

of the nonlinear dynamics of coordination patterns and 

the structural stability of various movements. At the 

same time, limitations are inevitable under the 

methodological aspect of experimental research, such as 

individual differences, sampling, and time series, in 

objectively explaining the principles and changing 

ϱ
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modes of motor behavior (Narizuka & Yamazaki, 2018). 

Part 3: System Dynamics

System dynamics examines a set of individual 

elements or the time-series process of a structure and 

then discusses a single element or causal relationship 

regarding a specific state (Rosen, 1985). While 

accepting both a linear approach for force control and 

a nonlinear approach for coordination dynamics, as 

discussed above, system dynamics presupposes the 

likelihood that individual elements may not show 

unidirectional (i.e., linear or nonlinear) movements or 

responses concerning internally or externally significant 

interactions, that is, a gain (i.e., payoff) or loss (i.e., 

failure) (Chen & Billings, 1992).

→⇒ (8)

Here,  denotes an element with several entities, and 

 denotes a function pointing in a specific direction 

(→) that coincides with the target value. Because the 

value  of  includes specific entities  , in 

addition to other intrinsic entities, the output can be 

either linear or nonlinear. Moreover, the system assumes 

that each entity internally interacts with all external 

entities, which we call the environment (Schöner, 2002). 

→→ (9)

Here, can perform two types of interactions with 

the external world (environment). The environment 

exerts its effect () on () and is given an effect () 

from  at a given time (). Accordingly, a system can 

be defined by several interactive individual elements 

inherent in coherent behavior (Juarrero, 1999). This is 

reflected in the mechanism by which each element can 

actively change its behavior. It also constitutes the basis 

for quantitative or qualitative observations of the 

specific change processes of actual variables (Ashby, 

1947; Marchal, 1975).

Network-agent-based Evolution 

As previously described, system dynamics can show 

how parts or components jointly shape a structure and 

adapt to environmental changes. A greater emphasis is 

placed on the emergence of stationarity than on the 

accuracy or variability of force control, stability, and 

coordination uncertainty. Its crucial variables are the 

actions of other individuals and the environment (i.e., 

neighbors) interacting with individuals (e.g., molecules, 

cells, or athletes). With the changes in its state at each 

given point in time ( ) being monitored within the time 

series (()) and its components () reflecting 

autonomous agents (()) acting in a bottom-up 

manner, we assign practical meaning to behavior and 

state ( ( )) (Poggio & Bizzi, 2004; Reynolds, 1987). 

   

  (10)

Because it can also include mechanisms exploring 

and imitating the strategies of other constituent elements 

(i.e., training habits and a tendency to seek healthcare), 

it enables more realistic estimates of the change and 

adaptation process based on interactions (Oliva, 2016). 

Specifically, many individuals and various components, 

their organizational form (structure: see Table 2 and 

Figure 5), and basic properties with constituent elements 

such as a propagation of positive (payoff) and negative 

(failure) variables allow more detailed (i.e., simulation) 

observations of processes such as changes in motor 

behavior (Pastor-Satorras et al., 2015).

   ∈ → ×  (11)

Define Parameterize Range 

Number of individuals N ∈(1, ∞) 

Connection prob (regular) P ∈(0, 1) 

Connection prob (random) B ∈(0, 1) 

Linear dimension (matrix) m × n row, col 

Note. The data structure includes three parameters, where m 

× n represents the adjacent matrix. 

Table 2. Athletes Network structure (Small-world property)
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The significance of this system dynamics approach 

(i.e., network and agent-based simulation) is emphasized 

in sports-related research (Clemente et al., 2016). 

Furthermore, its effectiveness has been demonstrated 

through myoneural activity (Ryan et al., 2018), sports 

performance transfer (Bock et al., 2012), and outcome 

prediction (Bunker & Thabtah, 2019; Oldham & Crooks, 

2019). This implies that studies have examined 

complicated intra- and inter-system interactions between 

individuals rather than observing the relationship 

between a force and interlimb coordination (Glazier & 

Davids, 2010). We previously verified empirically that 

our movements or motor behaviors are formed by the 

relative hierarchy of the CNS or its components and arise 

from the relationships between organizational members, 

whereby the role of influential individuals can serve as 

the strategy of that organization (system) (Passos et al., 

2017). 

According to Newell (1986), who investigated the 

principles of human motor behavior in the same context, 

the action of dynamic systems, such as human 

movement and motor behavior, emanates from 

interdependent system constraints between individuals, 

tasks, and the environment. Performer limitations such 

as motivation, skill level, or physical and psychological 

characteristics; task limitations such as rules, methods, 

and performance goals; and environmental constraints 

such as stadium conditions, jet lag, and sociocultural 

differences are inevitable constraints constantly 

encountered by performers. Furthermore, information 

constraints, such as the awareness of a performer 

regarding an individually available situation under a 

specific spatiotemporal setting, also affect 

decision-making at any instant. When encountering 

these constraints, we must appropriately interact with 

the constraining factors under other states for a 

successful task execution (Araújo & Davids, 2016). 

Therefore, the systematic handling of these relationships 

provides a realistic and accurate understanding of the 

phenomenon of motor behavior. Specifically, it captures 

the complicated interactions between components and 

the centrality of patterns and movements, and then 

analyzes intra-system interactions (Korte & Lames, 

2018; Sampaio & Leite, 2013). 

The following findings are noteworthy: (i) Functional 

variables of numerous nerves and muscles 

interconnected to produce movements (Grillner, 1975) 

are characterized by systematically different network 

properties (i.e., visual and motor systems) 

(Georgopoulos et al., 1982). 

Random Small-world Regular

Figure 5. Athlete network topologies from professional athletes in South Korea. The left and right plots depict random and 

regular structures, respectively. The middle plot depicts the network structure of male baseball players (n = 40, the actual 

level of support among team members = 5.5, and the actual level of support outside of team members = 0.18). These 

topologies were created using the parameters n = individual, p = regular connections within the team, and β = random 

connections outside the team. The questionnaire had a simple question regarding who would support the player (or 

contact) when having important matters to discuss (e.g., injury, advice, mistake, necessary decision-making, or poor 

behavior).
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     


  (12.1)

     

  (12.2)

     
 

 
   

(12.3)

The visual system (Equation (12.1)) is a set of 

regulated unity activities [ = matrix(eigenvalue), 

( ) = vector(eigenvector)] and mostly derives a 

single output signal () (Figure 6, plot on the left 

side). By contrast, the motor system (Equation (12.2)) 

regulates the unit activity of the individual components, 

and various types of output signals appear as the output 

vector field () or activations in parallel ( ) 

(Figure 6, plot of the middle side). However, regardless 

of the origin (i.e., top-down or bottom-up) and 

destination (i.e., →→ , →→ , ..., →→ ) 

of a signal stimulus and its output mode (single, as the 

visual system, or multiple and parallel, as the motor 

system), all possible interactions are formed as networks 

of the matrix ( ) and vector ( )) (Wickelgran, 1969) 

(Figure 6, plot on the left and middle). Even if the action 

of each component of a different structure is perceived 

with different intensities (i.e., centrality) depending on 

the constraints, they are positively or negatively 

interconnected and affect each other. Thus, a problem 

in any component results in a structural stability loss 

in the functionality (Sussillo et al., 2015). 

(ii) These network properties estimate the central 

tactical position during the game, based on the 

frequency and success rate of passes made in team 

sports such as soccer, basketball, and handball by 

expanding the scope of the application (Korte & Lames, 

2018) (Figure 6, plot on the right). 

      

 
(13)

(iii) Athletes mimic, unconsciously and automatically, 

the momentary emotional expressions of their teammates 

(Barsade, 2002). Furthermore, the positive or negative 

Figure 6. Generalization architectures of motor systems. In the case of vision (left), a single output signal is a combination of 

tuned unit activities (with weighted edges of a node). In the case of motor control (middle), each component of the output 

field is a combination of tuned unit activities (with weighted edges of a node). The right side shows its adjacent matrix 

corresponding to the network connection scheme. The plot of the right set shows a created team sport passing the network 

property of football data (average value on successful passes). The tracking of the passing distribution at the FIFA World 

Cup 2014 tournament was provided in the official FIFA match reports on their website (WorldCup/archive). The plot of the 

football shows that a defensive midfielder is significantly more central (P < .05) than other positions (see Table 3 for more 

details). Note a set of nodes connected by ties that link them (xij defines a binary tie between nodes).

DM GK LCD LD LF LM OM RCD RD RF RM

Centrality 0.11 0.06 0.09 0.09 0.08 0.09 0.10 0.10 0.10 0.08 0.10

Eigen_Cent 0.49 0.13 0.26 0.26 0.21 0.32 0.37 0.27 0.26 0.21 0.32

Table 3. Descriptive network property and its adjacent matrix for football data
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mood of a person (athlete or coach) rapidly spreads to 

other team members, exerting significant effects on their 

collaboration, conflicts, and task performance (Barsade 

et al., 2018).

(iv) In addition to changes in the form and injuries, 

small and large incidents, such as significant changes 

in individual performance (sports streaks (Bar-Eli et al., 

2006)) were observed to considerably impact the 

functionality of the system (Thacker et al., 2003). We 

must estimate such system dynamics in a myoneural 

network with a high interconnection of the components 

(Pacheco et al., 2006).

Because an individual can be identified by a specific 

arrangement (n × m) of interdependent relationships 

within the matrix of the network components to which 

they belong, more specific and direct content at issue 

is investigated, such as the connective structure, degree, 

hierarchy, and centrality. As empirically illustrated in 

Figure 6, a structure similar to a sports team that forms 

a low variance at an extremely high degree of 

interconnection has an exponentially faster and higher 

risk transmission rate (see Appendix 5 for more details) 

than a general social structure that does have such a 

formation (Cui et al., 2021). This system dynamics model 

has also been applied in situation to basic motor behavior 

(Park, 2020). Furthermore, the phenomenon of an 

emergent pattern of key debates of individual movements 

(i.e., velocity and displacement) was also empirically 

observed (Figure 7, right) by adding mechanical variables 

(i.e., imitation and exploration) that can be estimated 

from simple individual movement characteristics (Figure 

7, left: movement).

Complex Behavior

Reverting to the action of forces for more direct 

relevance to the principles explaining movements and 

motor behaviors, system dynamics (Haken, 1987) is of 

particular importance. Inspired by nonlinear dynamics 

studied during the 1960s, system dynamics 

characterized the concept of force as an elemental 

low-energy force field that directly forms a motion and 

can be applied to all systems as the motion and direct 

time-dependency change. This is because a slight 

change in force under the initial state leads to a small 

change on a short time scale but results in a qualitatively 

dramatic change on a longer time scale, drawing 

attention to the change in energy flow in tandem with 

a change over time rather than the force itself (Kugler 

et al., 1980). Specifically, the force can be viewed as 

a dynamic phenomenon inherent in a system governed 

by a self-recursion rule, rather than simply as a static 

state, such as the position () or velocity (′ (Rosen, 

1987, 1991)).

′ →  ′ ′   (14)

Movement is not simply a change from one position 

or velocity to another ( ,  ′ ), but rather a phase 

change (+ ′,  ′+) under a constraint in 

which individuals, tasks, and environments interact to 

a limited extent (Bohm, 1969). This represents the view 

that an individual cannot reach the goal intended by 

the motor behavior by individually producing all forces 

required for implementing a task or motion but rather 

contributes to the flow of the total energy by being 

involved in the event or direction of concern. 

This conceptual or methodological application of 

system dynamics (i) can estimate the extent to which 

the phase or relative pattern of a motor behavior within 

a time series is based on the degree of linear or nonlinear 

stability, which gradually changes. For example, (ii) 

based on a linear mean or standard deviation, system 

uncertainty can be assessed using the probabilistic () 

expected value [] of each variable (Shannon, 

1948).

HX 
 

× log

 
 

 × log
(15)

This is also (iii) a query into structured nonlinear 

quantitative (Stergiou & Decker, 2011) information on 

a time-series analysis, including the complexity, which 
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varies according to the sensitivity of the initial 

conditions of the analyzed object (variable r). 

Figure 7 shows the dynamic character of the system 

(vector operation), which the distance of the basic 

system phase defined as a given initial property differs 

in a time series. It denotes the time-dependent 

attractors’ changes to the parameter of interest and the 

topographic branching that appears as it passes through 

a specific time point in the phase space, allowing us 

to discern the qualitatively different behavioral 

contributions included in various constraints or motor 

parameters. The emergent phenomenon that shows the 

distance in the time-series-defined phase space and the 

stability (i.e., coordination or cooperation) of the object 

of observation begins to be driven from the initial state 

(Figure 8).

Notably, this fundamental process indicates that the 

second quantity of  contains the trait of the individual 

(agent-self interactions, where agents can interact with 

themselves), based on whether the following condition 

holds:

→→  

 
   
   

(16)

where the function assumes that the attribute of the 

component is conditional upon the value yield in the 

other direction (-) if the length of the magnitude 

is greater than the other length (). This trait was 

implemented according to the following quantities:

→ → →

T=1 T=10 T=100 Density at T=100

Figure 7. Behavioral dynamics underlying the network structure (see Table 2) and simple movement rule. Based on the 

simulation, the plot on the left shows that a displacement separates the individuals at the initial time steps (T = 1), and the 

relative position structure is controlled by the initial setting. Blue dots represent their position in an x, y coordinate plane, 

and the red lines denote links. The middle plots show the dynamic influence based on the individual characteristics at T = 

10 and T = 100 (middle right). The right plot represents its behavioral bias calculated by the density function (T = time 

steps). It refers to the fact that although the pattern of the individual behavior depends on a localized view of the initial 

conditions, a slight change in the individual movement characteristic (velocity) has a remarkably diverging (or converging) 

displacement. 

 ≺  →

⋮

 ≻  →

→

Figure 8. Schematic of the individual (vector =  , averaged =  ) operation in R2.
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 
   

   
  


   



   (17)

  
 

  
  

 (18)

where   is the velocity of the individual, represented 

by the length of the individual’s magnitude () with 

the direction of the individual (). In addition, 

is the average velocity, which includes the navigation 

of the entire population of N individuals. The results 

of   and  produce a new quantity   , which 

is written simply as (→  =  +
 ). This 

application expands a relatively simple nonlinear 

equation to gauge the system complexity (Wolf et al., 

1985). In addition, we can more elaborately determine 

the collective dynamic relationships of a group of 

periodically operated systems. 

Conclusions

Human movement and motor behavioral mechanisms 

were explained using primary data and theories from 

multidisciplinary research. The concepts of 

neurophysiological dynamics and cognitive- 

psychological theories can explain these highly complex 

phenomena, adding to the breadth and depth of research. 

In this context, irrespective of theoretical frameworks 

and methodologies (i.e., equilibrium-point method, 

uncontrolled manifold method, and HKB model), 

system dynamics (Strogatz, 1994) may be considered 

a topic of interest for many researchers. Force control, 

CNS motor programs, and representation are important 

in explaining movement principles (Schmidt & Lee, 

1999). However, the interactional relationships between 

multidimensional internal and external forces 

(Bernstein, 1967) must also be integrated into 

established frameworks and theories given that the 

various properties constituting a movement are 

adequately systematized in the context of an executed 

movement (Kelso, 1994). Linear or nonlinear 

perspectives (Turvey & Carello, 1996) imitate all 

phenomena involved. 

Motion control mechanisms have long been explained 

in many ways (Newell & Simon, 1976). Applications 

of basic mechanical concepts such as wedges, levers, 

wheels, pulleys, and screws have made it possible for 

models of scientific phenomena during the 17th and 

18th centuries to develop new types of explanations for 

the movement principles. A dynamics-based approach, 

which began in the 1960s with an emphasis on nonlinear 

methodology, has made it possible to explain in detail 

how functional behavioral changes occur in geometric 

methods—in particular, using terms such as orbit, 

attractor, and branching, establishing theoretical 

frameworks for various connections (synapses), 

schemas, and types of logic (programs) for functional 

structures and data processing processes (Ashby & Hall, 

1952).

This approach attracted the attention of researchers 

during the 1980s and 90s as a suitable structure for 

understanding human movements (Beer, 1995). 

Algorithms such as evolution, individual-based, and 

network properties are beneficial for understanding 

complex changes for an emergent behavior and 

self-organization. By substantializing the observations 

of relatively stable functional parameters and interactive 

processes and providing methods to conceptualize 

systems subject to continuous change, we have another 

tool to explain a movement.

Practical Applications

To move, nerves, muscles, joints, and segments must 

work efficiently and jointly according to the limited 

context of the individual, task, and environment 

involved in the executed movement. Moreover, the 

conditions of various contexts must be met (Abernethy 

& Sparrow, 1992). Simultaneously, duly admitting the 

achievements of classical linear or nonlinear approaches 
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(i.e., motor program or representation) in explaining the 

dynamics of motion, note that the perspective of 

multidimensional system dynamics is also essential 

(Strogatz, 1994). As concretely rationalized in the main 

body of this paper, the properties of a movement or 

motor behavior are dynamically interrelated (Kelso, 

1994), which cannot be fully understood through causal 

links or linear/nonlinear descriptions (Iberall & Soodak, 

1987). 

This system dynamics approach enables movement 

researchers to observe qualitative motor behavioral 

changes; thus, it is worth adopting when examining 

human motor parameters and stable characteristics 

(Bernstein, 1967). Given that human movements are 

dynamic and accompanied by time-series structures 

such as relativity, environmental stability, a coupling 

between perception and motor parameters, and context 

dependency effects (Kelso, 1994; Kugler & Turvey, 

1987), attention must be paid to all types of adaptive 

relationships that emerge in diverse and complex human 

movements (Amazeen, 2002; Latash et al., 1996; Park, 

2022b; Zanone & Kelso, 1997). 

Against this background, this study empirically 

examined the dominant perspectives in studies on 

human movement. Detailed descriptions of the linear 

force control model were provided, followed by a 

nonlinear model, including a typical system dynamics 

model (Enoka, 2008). We realistically proposed the 

possible role of a system dynamics approach, in addition 

to explaining complex movement (motor) control. 

Furthermore, the considerations and proposals made in 

this study serve as interesting, up-to-date topics 

conducive to improving the potential of motor behavior 

research. 
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Appendix 1
Illustrations of the Servo Control and Equilibrium Point Hypothesis

The image of the left side, each circuit denotes a population of neurons (Ns), interneurons (INs), and motoneurons 

(alphaMNs, gammaMNs). The system in its stable configuration (the image of the right side), this realization appears 

to be equilibrium points (EP). The point of intersection between the load characteristic is the equilibrium point 

of the system corresponding to a combination of muscle length () and muscle force (p). solid line: characteristic 

of the tonic stretch reflex (static muscle torque versus joint angle); : its threshold: dashed line: some load characteristic; 

p. : equilibrium torque and angle, respectively. Note: each level has a specific function in the illustration (Feldman, 

1986).

Appendix 2
The mechanism of oscillation on two different pendulums

Corresponding to the model which introduced in background, the mechanism of oscillation on two different (left 

pendulum and right pendulum) but nearly identical process phases was defined by the following dynamic 

(     ). Here,  is the phase of the strength between the left hand () and the right hand (). The 

degree of relative phases (0°-180°) depends on the difference in the two oscillators. If each  was defined as 

a sine function, as follows ( ,   


sin   ,     


sin   ), the logic can simply be 

rewritten to  as the same dynamic function (    ). Then, each  can be specified as the following equation:

  
  

→    

          

          

Data from both hands were dividing into left and right components. These are (real) numbers and computed 

from the above phase coordination mathematical model. It can be infinitely large data set corresponding time series, 



System Dynamics on Motor Behavior 181

probability distribution (discrete state variable) or probability density (continuous state variable) describing certain 

aspects of a distribution (Amazeen et al., 1997; Treffner & Turvey, 1996; Park, 2022). 

Appendix 3
Preferred movement frequencies of the individual oscillators

Simulation on the left denotes the energy of the function at each averaged relative phase (Blue line = the 

vertical-axis). 0 is the most stable value for the system. The horizontal-axis indicates averaged relative phase between 

two limbs from in-phase at 0 to the anti-phase at π= 180° (-π = -180°). At the local point of 0 and π (-π), the 

function is close to those minima (attractors; black discs), and at the local point around 90 (-90), the state is close 

to maxima (repellers: red discs). The green and red lines denote the variation of the potential (V) functions depending 

on the two components’ preferred frequencies. Simulation on the right: blue line indicates identical symmetry; green 

line indicates large different symmetry (function: b/a = 0.5, detuning = -0.5); and red line indicates even larger 

different symmetry (function: b/a = 0.5, detuning = -1.5) (Haken et al., 1985; Park, 2022).

Appendix 4
Experimental characteristics for the extended symmetry breaking forces (entropy)

   

Each simulation denotes the estimated entropy forces according to the time series for each experimental design. 

The simulation on the left side denotes the entropy forces of the normal condition (red line = 5:00, green line 

= 12:00, black line = 17:00). The simulation in the middle side denotes the entropy forces of the heat-based normal 

(red line = 5:00, black line = 17:00) vs. abnormal (green line = 5:00, yellow line = 17:00) conditions. The simulation 
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on the right side denotes the entropy forces of the ice-based normal (red line = 5:00, black line = 17:00) vs. 

abnormal (green line = 5:00, yellow line = 17:00) conditions. Notice considering the experimental design, the delta 

T value was 0.06, and the number of realizations of the ensemble was N = 50 (averaged pendulum frequency 

per minute) (Park, 2020).

Appendix 5
Prototype risk propagation distributions

G(n = 10, p = 0.2) → λχ = low, σ = high G(n = 10, p = 0.2) → λχ = high, σ = low

The left (low λχ) and right (high λχ) simulations show the number of failures for the time step (t = 10) with 

the corresponding area proportional to the values. As the failure propagates, the area between the failure (red) 

and non-failure (blue) increases in each time step. Notice that the network property was gathered from two different 

sports groups’ data (upper = social group, bottom = athlete group). The eigenvector centrality is a feature of an 

adjacency matrix in a network (Ax = λχ, λ denotes the eigenvalue). Further, a higher connection for a specific 

node in an organization increases the eigenvector centrality and less variation (low), and vice versa (see Table 

below) (Pacheco et al., 2006; Park & Kim, 2020). 

  



≠ 

           

G(n, p) N_0 N_1 N_2 N_3 N_4 N_5 N_6 N_7 N_8 N_9

n = 10, p = 0.2
degree 1 2 3 1 1 3 1 3 4 1

Ax = λx 0.148 0.312 0.427 0.174 0.164 0.402 0.207 0.362 0.509 0.207

n = 10, p = 0.9
degree 8 9 8 7 8 9 9 9 9 8

Ax = λx 0.302 0.334 0.305 0.269 0.302 0.334 0.334 0.334 0.334 0.305

Note: For a synthetic network produced using G(n, p). To quantify the probability that a node has a degree for all [0 < d < 

(n-1)], a node is considered to have a degree of zero when nothing is connected, and the expected averaged node degree is 

p(n-1) = 0.9 × 9 = 8.1 in case of the n = 10, p = 0.9.

Table. Properties of a created network (N = node)


